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MOVEMENT AND LOCALIZATION OF NANOPARTICLES IN AN IDEAL LIQUID 
UNDER THE INFLUENCE OF THE GRADIENT FORCE OF LIGHT PRESSURE 

A.Ch. Svistun, E.V. Musafirov, L.S. Gaida, E.V. Matuk 

Yanka Kupala State University of Grodno 
 

Аннотация. Проведен теоретический анализ качественного поведения решений уравнения Ланжевена для движения 
сферической диэлектрической наночастицы, находящейся в интерференционном поле, формируемом при наложении 
встречных пучков лазерного излучения под действием градиентной силы без учета силы сопротивления среды.  
Показано, что в зависимости от начальных условий возможны два различных режима движения наночастиц – локали-
зация наночастиц в одном из максимумов интерференционной картины излучения или неограниченное удаление  
от начального положения в пределах интерференционного поля. 
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Abstract. A theoretical analysis of the qualitative behavior of solutions to the Langevin equation for the motion of a spherical 
dielectric nanoparticle located in an interference field formed by the superposition of oncoming laser beams under the action of 
a gradient force without taking into account the resistance force of the medium is carried out. It is shown that, depending on the 
initial conditions, two different modes of movement of nanoparticles are possible – localization of nanoparticles in one of the 
maxima of the interference pattern of radiation or unlimited distance from the initial position within the interference field. 
 
Keywords: dielectric nanoparticles, radiation forces, light scattering, interference of electromagnetic waves. 
 
For citation: Svistun, A.Ch. Movement and localization of nanoparticles in an ideal liquid under the influence of the gradient 
force of light pressure / A.Ch. Svistun, E.V. Musafirov, L.S. Gaida, E.V. Matuk // Problems of Physics, Mathematics and Technics. – 
2024. – № 1 (58). – P. 44–49. – DOI: https://doi.org/10.54341/20778708_2024_1_58_44 (in Russian). – EDN: SBVDBQ 

 
 

Введение 
Проблема воздействия оптического излуче-

ния на частицы вещества актуализировалась по-
сле создания мощных лазерных источников све-
тового излучения. В настоящее время существу-
ет множество работ, в которых сообщается об 
исследовании действия силы светового давления 
на наночастицы с учётом физических свойств не 
только наночастиц [1]–[6], но и среды, в которой 
они расположены [7]–[9]. Не менее важными 
факторами, влияющими на эффективность взаи-
модействия оптического излучения с частицами 
вещества, являются параметры (степень коге-
рентности, объемная плотность энергии, мощ-
ность и т. д.) лазерного излучения [10]. В экспе-
риментах по манипулированию малыми части-
цами с использованием силы светового давления 
обычно используются сфокусированные пучки 
излучения лазеров непрерывного действия [11]–

[13]. Посредством формирующих оптических 
систем удаётся сконцентрировать энергию ла-
зерного излучения в узком пучке, чем обеспечи-
вается возможность более эффективного управ-
ления локализацией микро- и наночастиц [14]–
[16], особенно интересного в медицинских при-
ложениях. С использованием силы светового 
давления можно управлять не только потоком 
клеток, но и отдельно взятой биологической 
клеткой [17], [18]. 

Большое внимание уделяется изучению 
действия силы светового давления на металличе-
ские сферические наночастицы, расположенные 
вблизи диэлектрической подложки [19], [20], на 
диэлектрические сферические частицы вблизи 
металлических структур [21], [22], а также на 
системы нескольких металлических наноразмер-
ных объектов [23], [24]. При этом в зависимости 
от типа возбуждаемой плазмонной моды (смена 
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типа моды может достигаться в результате как 
управляемого изменения расстояния между ме-
таллическими объектами [24], так и варьирова-
ния длины волны падающего излучения) направ-
ление силы светового давления может изменять-
ся. Это означает, что между облучаемыми лазе-
ром металлическими наночастицами возможно и 
притяжение и отталкивание, что представляется 
весьма интересным в наноплазмонике. 

В работах [25], [26] сообщалось о результа-
тах теоретического исследования транспорти-
ровки металлических наночастиц в поле сфоку-
сированного лазерного излучения под действием 
силы светового давления. Особое внимание в 
них уделено изменению силы светового давле-
ния в условиях, соответствующих проявлению 
плазмонного резонанса в сфероидальной метал-
лической наночастице [27]. Показано, что вели-
чина силы светового давления существенно за-
висит от ориентации наночастиц относительно 
направления падающего лазерного пучка.  

В работе профессора Н.Г. Хлебцова [28] со-
держится краткий обзор известных к началу XXI 
века теоретических и экспериментальных работ 
об изучении оптических свойств металлических 
частиц и их применении для направленной дос-
тавки медицинский препаратов к биологическим 
мишеням посредством силы светового давления. 
Профессором В.В. Бучановым с соавторами в 
[29] продемонстрирована возможность переме-
щения микрочастиц (клеток) в поле излучения 
фемтосекундного лазера и манипулирования их 
положением при варьировании силы светового 
давления. Перспективной для медицинских при-
ложений оказалась и показанная в [30] возмож-
ность деструкции патологических клеток и ре-
зекции фрагмента от скопления раковых клеток 
вследствие разрыва связей между ними при мно-
гофотонном поглощении излучения биологиче-
скими объектами в поле фемтосекундных свето-
вых импульсов. 

Исследование зависимости распределения 
наночастиц, помещенных в прозрачную жид-
кость, по размерам на характеристики четырех-
волнового преобразователя излучения сделано в 
работе [31]. Показано, что в зависимостях ам-
плитудного коэффициента отражения и времени 
выхода на стационарное значение полуширины 
полосы пространственных частот от дисперсии 
наблюдаются экстремумы, при которых коэффи-
циент отражения принимает наибольшее, а время 
выхода наименьшее значения. 

В работе [32] проведен анализ вида про-
странственного спектра объектной волны, обра-
зующейся в процессе четырехволнового взаимо-
действия в схеме с горизонтально распростра-
няющимися волнами накачки в зависимости от 
массы наночастиц в прозрачной суспензии. По-
лученные результаты могут быть использованы 
при проектировании систем нелинейной 

адаптивной оптики на основе прозрачных суспен-
зий наночастиц для задач коррекции мелкомас-
штабных фазовых искажений сигнальной волны. 

Изучение сепарации наночастиц в прозрач-
ной полидисперсной водной суспензии с различ-
ными типами распределений по размерам под 
действием силы светового давления (на основе 
стационарного решения уравнения диффузии), 
возникающей в поле лазерного излучения интен-
сивностью 0,5–500 кВт/см2, рассмотрено в рабо-
те [33]. Установлено, что на дно кюветы пре-
имущественно будут осаждаться частицы радиу-
сом более 100 нм, а концентрация более мелких 
наночастиц во всем объеме суспензии останется 
без изменений. В случае симметричного началь-
ного распределения наночастиц по размерам 
воздействие интенсивного светового пучка на 
суспензию приводит к нарушению симметрии 
кривой функции распределения, а также смеще-
нию максимума в область меньших размеров 
частиц на облучаемой поверхности. 

Теоретическое исследование диэлектриче-
ской проницаемости, соответствующей плазмон-
ным осцилляциям в эллипсоидальной наноча-
стице с учетом вкладов по малому отношению 
размера наночастицы к длине волны приведено в 
работе [34]. Основное внимание в данной работе 
было уделено так называемым дипольным плаз-
монным осцилляциям, эффективно возбуждае-
мым почти однородным электрическим полем, 
возникающим вблизи наночастицы при действии 
на нее плоской монохроматической электромаг-
нитной волной излучения лазера. На основе ин-
тегральных уравнений по объему наночастицы 
предложена общая схема нахождения поправок 
по волновому числу к электростатическому вы-
ражению для диэлектрической проницаемости 
плазмонных осцилляций произвольной мульти-
польности. 

В настоящее время, несмотря на большое 
количество работ по данной тематике, остается 
нераскрыт вопрос качественного анализа урав-
нения движения частицы, а также получение но-
вых теоретических данных по управляемой 
транспортировке и локализации наноразмерных 
частиц, находящихся в жидкой среде, силами 
светового давления лазерного излучения. 

 
1 Основные соотношения 
Сила светового давления, действующая на 

частицу в пространственно модулированном ла-
зерном луче, может быть условно разделена на 
две составляющие: составляющую, направлен-
ную вдоль градиента интенсивности света, т. е. 

градиентную силу grad ,F


 и составляющую, дейст-

вующую вдоль направления распространения 

луча, и состоит из силы поглощения absF


 и рас-

сеивающей силы scat .F

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Для рассматриваемой нами прозрачной на-

ночастицы abs 0F 


 и, следовательно,  

grad scat .F F F 
  

 

Поскольку интенсивности встречно распро-
страняющихся лазерных лучей, образующих 

стоячую волну, равны, то scat 0F 


 и влияние из-

лучения на наночастицу полностью обусловлено 
только градиентной составляющей силы. 

Интенсивность излучения будет опреде-
ляться следующим уравнением: 

0( ) (1 cos(2 )),I z I kz   

где ( )k c n   – волновое число,   – частота из-

лучения, n – показатель преломления жидкости. 
В приближении Рэлея, когда размеры час-

тицы малы по сравнению с длиной волны излу-

чения, выражение для градиентной силы gradF


 

можно записать в виде: 

grad 0

( )
2 4 sin(2 ),

n dI z n
F z z I k kz

c dz c
        

  
 

где 
2

3
2

1

2

m
R

m


 


 – поляризуемость сферической 

наночастицы радиуса R  ( 1),kR   0 ,m n n  0n  – 

показатель преломления частицы. 
Уравнение движения наночастицы, разме-

щённой в идеальной жидкости под действием 

силы gradF


 аналогично математическому уравне-

нию маятника и имеет вид: 
2

02
4 sin(2 ),

d z n
m I k kz

cdt
              (1.1) 

или 
2

02
4 sin(2 ) 0.

d z n
I k kz

mcdt
     

Заменяя ускорение наночастицы 

,
dv dv dz vdv

a
dt dt dz dz

    получим 

04 sin(2 ).
vdv n

I k kz
dz mc

     

Разделяя переменные и интегрируя обе час-
ти, получим 

04 sin(2 ) .
n

vdv I k kz dz
mc

      

Решение данного уравнения имеет вид 
2

02 cos(2 )
2

v n
I kz C

mc
     

или 

04 cos(2 ) 2 ,
n

v I kz C
mc

      

где C  – постоянная интегрирования, которую 
найдем из начальных условий 0( 0,t   

0 / 2 ,z k   0 0).v   

Подставим начальные условия в последнее 
уравнение: 

0 04 cos 2 2 ,
2

n
v I k C

mc k

      
 

 

или 

2
0 04 cos( ) 2 .

n
v I C

mc
      

Откуда, 
2
0

02 .
2

v n
C I

mc
     

Возвращая постоянную интегрирования в 
уравнение, получим 

2
0 0 04 cos(2 ) 4 ,

n n
v I kz v I

mc mc
         (1.2) 

т. е. зависимость скорости от координаты перио-
дическая с периодом / .k  

На рисунке 1.1 представлена теоретическая 
зависимость скорости сферической диэлектриче-
ской наночастицы, находящейся в интерферен-
ционном поле, формируемом при наложении 
встречных пучков лазерного излучения под дей-
ствием градиентной силы без учета силы сопро-
тивления среды от времени, построенная на ос-
новании уравнения (1.2). 

 

 
 

Рисунок 1.1 – Зависимость скорости движения 
наночастицы в поле лазерного излучения 

от времени ( 1,33,n   0,53,   185,5·10  кгm   
6

0 5,093 10I    Вт/м2, 532   нм, 3
0 10v   м/с) 

 

Представляя 
dz

v
dt

  и разделяя переменные, 

можно получить закон движения наночастицы, 
имеющий достаточно громоздкий вид, который 
сложен для анализа качественного поведения 
решений. 

 
2 Исследование качественного поведения 

решений 
В уравнении (1.1) выполним подстановку 

( )
( ) ,

2

x t
z t

k
  получим уравнение 
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2
08α π

sin ,
I k n

mx x
c

   

где 
2

2
.

d x
x

dt
  Введем замену параметров 

2
08α π

,
I k n

s
c

  тогда уравнение (1.1) примет вид 

sin 0.mx s x         (2.1) 
Заметим, что уравнение (2.1) эквивалентно 

системе уравнений: 
,

sin .

x y

s
y x

m





 




       (2.2) 

Фазовой поверхностью системы (2.2) явля-
ется цилиндр. Особыми точками (точками рав-
новесия) этой системы на развертке фазового 
цилиндра являются точки ( , ) (0,0)x y   и 

( , ) ( π,0).x y    Заметим, что замена переменных 

( , ) ( , )x y x y    не изменяет систему (2.2), т. е. 

фазовый портрет системы (2.2) симметричен от-
носительно начала координат.  

Матрица Якоби системы (2.2) имеет вид 
0 1

( , ) .cos
0

J x y s x

m

 
    
 

 

Для особой точки ( π,0)  собственные чис-

ла матрицы Якоби ( π,0)J   есть 1,2 / .s m    

Учитывая, что , 0,m s   получим два действи-
тельных числа разных знаков. Тогда точка 
( π,0)  является седлом – неустойчивым состоя-

нием равновесия (рисунок 2.1). 
Для особой точки (0,0)  собственные числа 

матрицы Якоби (0,0)J  есть 1,2 / .s m     

Учитывая, что , 0,m s   получим пару чисто 

мнимых чисел. Тогда точка (0,0)  – либо центр 

(окружена замкнутыми траекториями), либо фо-
кус (окружена спиралями). Перемножая уравне-
ния системы (2.2), получим уравнение 

sin ,mydy s xdx   общий интеграл которого 
2 2 cos ,my s x C   т. е. функция  

2( , ) 2 cosV x y my s x   
является первым интегралом системы (2.2), произ-
водная функции ( , )V x y  в силу системы (2.2) есть  

 

( , )

2 sin 2
si

.
n

0
s x

y
m

V V
V x y x y

x y

s x my

 
  
 

  

  
 

Тогда траектории системы (2.2) находятся на 
линиях уровня функции .V  Для достаточно ма-

лых 0   (при 0 2 )s    линии уровня 1( )V    

представляют собой замкнутые кривые,  

окружающие точку (0,0).  Эти кривые не содер-

жат точек равновесия и, следовательно, точка 
(0,0)  является центром (рисунок 2.1).  

 

 
 

Рисунок 2.1 – Фазовый портрет системы (2.2) 
 

Заметим, что в [35] изучается движение 
прозрачной наночастицы сферической формы в 
пространственно модулированном лазерном луче 
под действием градиентной силы с учетом силы 
сопротивления среды, которое описывается сис-
темой уравнений 

,

sin ,

x y

b s
y y x

m m





  




   (2.3) 

где 6 ,b R     – динамический коэффициент 

вязкости жидкости, R  – радиус сферической 
наночастицы. 

Эта система отличается от системы (2.2) на-

личием слагаемого 
b

y
m

  в правой части второго 

уравнения. Система (2.3) имеет те же особые 
точки, но характер точки (0,0)  с ростом пара-

метра 0b   сначала меняется на устойчивый 

фокус (при 2 ),b ms  а затем на устойчивый 

узел (при 2 ).b ms  

Заметим, что системы (2.2) и (2.3) являются 
автономными, и, следовательно, с помощью под-
ходов, изложенных в [36]–[40], результаты ана-
лиза качественного поведения решений системы 
(2.3) (или при 0b   системы (2.2), а значит и 
уравнения (1.1)) можно распространить на реше-
ния специальным образом возмущенных (с со-
хранением отражающей функции Мироненко) 
систем и, в частности, системы 

(1 ( )),

sin
(1 ( )),

x y t

by s x
y t

m

 



  




     (2.4) 
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которая эквивалентна уравнению 

 
 

 2 2
1 ( ) ( ) 1 ( ) sin

0,
1 ( )

b t m t s t x
x x

m t m

   
  




   

где ( )t  – непрерывная скалярная функция. При 

этом возмущенная система (2.4) сохраняет (при 
дополнительных условиях на функцию ( ))t  

многие качественные свойства решений исход-
ной системы (2.3), такие как наличие периодиче-
ских решений и устойчивость решений по Ляпу-
нову [36]. 
 

Заключение 
В работе проведен теоретический анализ 

качественного поведения решений уравнения 
Ланжевена для движения прозрачной наночасти-
цы сферической формы в пространственно мо-
дулированном лазерном луче под действием гра-
диентной силы без учета силы сопротивления 
среды (в идеальной жидкости). Построен фазо-
вый портрет этого уравнения. Показано, что в 
зависимости от начальных условий возможны 
два различных режима движения наночастиц – 
локализация наночастиц в одном из максимумов 
интерференционной картины излучения или не-
ограниченное удаление от начального положе-
ния в пределах интерференционного поля. 
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